A 5-Day Short Course
Radioactive Sample Analysis -
Instrumentation & Other Methods
October 8-12, 2018 • Atlanta, GA

Course Description

This course is designed to provide a practical introduction to laboratory analysis methods for those new to the field, while also providing practical applications to those who are currently working in analytical laboratories. The course is intended for radiochemists, technicians and others who are doing routine and specialized analysis, as well as quality assurance officers and data validators who may have a need an understanding of radioanalytical measurements. Even data users will benefit from the insights and discussions of Data Quality Objectives and work specifications to ensure that the results they get back from the laboratory provide the information that is required for the project. Topics are applicable to a wide range of sample matrices including operational samples, environmental samples and in vitro bioassay.

This course will help you

- Understand the methods available to analyze samples.
- Understand what pitfalls can occur, even in the most well-established laboratories.
- Understand how the source term can impact the results.
- Understand the impact of sample preparation on the results.
- Understand how to develop Data Quality Objectives with the laboratory to ensure that the results you need are the results you get.
- Determine the results you need.
- Understand how much QA/QC is required.

Continuing Education Credits

The AAHP awarded 40 credits for this course.

Technical Management Services
Review of Fundamentals

- Review of Interactions with Matter (Charged particles and photons)
- Gamma Spectral Characteristics
- Transient and Secular Equilibrium
- Decay Corrections
 - Short Lived Nuclides - Decay During Counting and Sample Collection
 - Buildup, in-growth
 - Neutron Activation
- Peak Shape and Fitting - What it is and What it Means
- Decay Schemes
- References

Laboratory Detection Systems

- Gas Flow Proportional Counting
 - Detector and Electronics
 - Calibration
 - Sample Preparation
- Liquid Scintillation Counting
 - Detector and Electronics
 - Sample Preparation
 - Calibration & Quench Corrections
- Alpha/Beta Counting
 - Alpha Spectrometry
 - Sample Matrix & Effects on Spectral Characteristics

Gamma Spectroscopy - Remaining time with The exception of the hours spent on QA

- Detectors (HPGe, NaI(Tl), and others)

Gamma Spectroscopy Electronics & Effects on Spectral Results

- Pole Zero
- ADC
- Dead Time
- High & Low Count Rate Considerations

Gamma Spectroscopy Calibration

- Energy and Shape Calibrations
- Fixed Geometry Efficiency Calibration Considerations
- Modeled Laboratory Geometry Considerations
- In Situ Field Geometry Considerations

How Does the Gamma Software identify Nuclides

- Peak Search and Fit
- Interactive Peak and Fit
- Interference Corrections
- MDA/LLD/Critical Level
- Analysis Parameters which affect results

Gamma Spectroscopy Summation Error Corrections

- Random Summing
- Coincidence (Cascade) Summing Correction

Gamma Spectroscopy Library Parameters

- Selecting Key Lines
- Selecting Confirming Peaks
- Use of Lines from Progeny for Quantification of a Nuclide
- Optimizing the Library to the Software

Reviewing Gamma Spectra

- Exercises

Unidentified Gamma Spectroscopy Peaks

- Why Resolve These Peaks?
- How to Resolve These Peaks?

Counting Statistics

- Statistical Basis of Radiation Detection
 - Statistical Nature of Radioactive Decay
 - Commonly Used Statistical Methods
 - Confidence Interval Estimation
- Statistical Analysis of Radiation Measurements
 - Types of Error
 - Error Estimation in Count Data
 - Propagation of Error
 - Expectation and Goodness of Fit Methods
 - Detection Limit Derivation (decision level, lower limit of detection, minimum detectable activity, counting time estimation)
 - Chi-Square testing of counting results
 - Total Propagated Uncertainty/Combined Standard Uncertainties

Quality Assurance - Laboratory Instruments

- Data Quality Objectives - Why bother?
- Establishing Parameters
- Trending Charts
- Control Charts
- Verification of Efficiency Calibrations, including density correction and quench curves
- ANSI N42.23 and others
- Selection of calibration standards
- Preparation of standards derived from certified materials
- Guidance
 - Quality assurance specifications
 - Standards
 - References
- Documentation
 - Procedures
 - Sample Tracking
 - Calibration and Analytical Results
 - Calculations & Computer Software

Applications and Practical Problems

- Sampling Techniques
 - Sample size & Type - Air, water, smear, soil, urinalysis, vegetation, effluents, etc.
 - Taking representative samples
- Sample preparation - General
 - Geometry, density
 - Separation methods
 - Quality control

Accommodations

This course will be held at the Atlanta Airport Marriott. A block of rooms has been reserved at reduced rates for course participants. Please make your reservation directly with the hotel by calling 404-766-7900 – please specify that you are attending Technical Management Services’ short course to receive the group rate.

The reserved block of rooms will be released 3 weeks prior to the course (at which time rooms will be offered on an availability basis only).

4 Easy Ways To Register....

1. Register online: www.tmscourses.com
2. Call TMS at (860) 738-2440
3. Fax your registration (860) 738-9322
4. Mail the attached form:
 TMS, P.O. Box 226, New Hartford, CT 06057

Name ___
Company __
Address __
City __________________________ State _________ Zip________
Telephone ______________ Fax ______________
Email ___
Course Fee: $1295.00

Charge Credit Card:
- Mastercard
- Visa
- American Express

Discounts:
- $50 discount if 2 or more people from the same company register
 ... take an additional $50 discount if payment is received by August 17th