Air Sampling in Nuclear Facilities
During Routine and Emergency Situations
August 25-29 • San Diego, CA

Scope

This 4-day course provides a practical understanding of the requirements of air sampling in nuclear power generating stations and other nuclear facilities such as waste processing and fuel fabrication plants. It also presents current methods of addressing these requirements. The course will be organized into three main topics: fundamentals of air sampling, air sampling regulatory requirements, and equipment used for air sampling.

Fundamentals of air sampling will provide the design considerations for the extraction of representative samples from stacks and ducts and from the environment and work areas.

An overview of the requirements of ANSI N13.1-1999 (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities), 40 CFR Part 61 (Radiological National Emission Standards for Hazardous Air Pollutants), and 40 CFR Part 50; Appendix B (Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere) will be provided. The requirements for air sampling during emergencies will also be presented.

The third topic will include a description of the various types of air samplers including the capabilities and limitations of each type of sampler. The types of air samplers and filter media will be compared and the suggested applications for each will be discussed. Special purpose air samplers will also be presented. Typical operation, maintenance, and calibration procedures will be discussed. The course will conclude with a hands-on demonstration of many of the air samplers described.

This course will provide an understanding of regulatory requirements that govern the sampling of radioactive particulate and iodine in a nuclear facility, the design criteria to be considered in sampling of these types of isotopes, and the selection of air sampler based on regulatory requirements, functional criteria, and operation/maintenance needs.
1. Regulatory Requirements for Air Sampling
 a. Introduction of the Regulatory Requirements for Air Sampling
 i. Subpart H
 1. Existing Sources
 2. New Sources
 ii. Subpart I
 i. Sampling Requirements for Noble Gases
 ii. Sampling Requirements for Particulates
 iii. Sampling Requirements for Iodine
 d. Regulatory Guide 1.97 – Criteria for Accident Monitoring Instrumentation for Nuclear Power Plants
 i. Sampling Requirements for Noble Gases
 ii. Sampling Requirements for Particulates
 iii. Sampling Requirements for Iodine
 e. Regulations Limiting Inhalation Exposure in the Workplace and to the Public

2. Methods of Compliance with the Regulatory Requirements
 a. Introduction
 b. Compliance with Rad/NESHAP (40 CFR 61) Requirements
 i. Continuous Sampling/Monitoring
 ii. Periodic Sampling/Monitoring
 iii. Diffuse and Fugitive Sources
 c. Compliance with Regulatory Guide 1.21
 i. Sampling Requirements for Noble Gases
 ii. Sampling Requirements for Particulates
 iii. Sampling Requirements for Iodine
 d. Compliance with Regulatory Guide 1.97
 i. Post-accident Sampling Methods for Noble Gases
 ii. Post-accident Sampling Methods for Particulates
 iii. Post-accident Sampling Methods for Iodine
 e. Compliance with the Regulations Limiting Inhalation Exposure in the Workplace and to the Public
 f. Reference Standards for Compliance with the Regulatory Requirements

3. Air Sampling Systems
 a. Introduction to Air Sampling Systems
 b. Design Considerations for Air Sampling Systems for Regulatory Guide 40 CFR 61 Compliance
 c. Design Considerations for Air Sampling Systems for Regulatory Guide 1.21 Compliance

4. Air Sampling Equipment
 a. Air Samplers
 i. High Volume Air Samplers
 1. Fixed High Volume Air Samplers
 2. Portable High Volume Air Samplers
 ii. Medium Volume Air Samplers
 1. Fixed Medium Volume Air Samplers
 2. Portable Medium Volume Air Samplers
 iii. Low Volume Air Samplers
 1. Fixed Low Volume Air Samplers
 2. Portable Low Volume Air Samplers
 iv. Very Low Volume Air Samplers
 1. Fixed Very Low Volume Air Samplers
 2. Portable Very Low Volume Air Samplers
 v. Battery Powered Air Samplers
 vi. Special Purpose Air Samplers
 b. Filter Holders
 i. Combination Cartridge & Paper Holders, Open Faced
 ii. Paper Only Filter Holders, Open Faced
 iii. In-Line Combination Cartridge & Paper Holders
 iv. In-Line Paper Only Filter Holders
 c. Filter Collection Media
 i. Filter Paper (47mm, 2", 4", 8" x 10")
 ii. TEDA Impregnated Carbon Cartridges
 iii. Silver Gel Collection Columns

5. Air Flow Calibrators and Calibration Adapters
 a. Analog Low & High Volume Calibrators
 b. Digital Low & High Volume Calibrators
 c. Digital Standard Temperatures & Pressure Calibrators

6. Air Sampling Accessories

7. Calibration and Maintenance of Air Sampling Equipment and Accessories

8. Hands on Demonstration of Air Sampling Equipment Operation and Calibration
Lead Instructor

Marc Held is President of HI-Q Environmental Products company. Marc oversees the day-to-day operation of research & development, design, manufacturing, & application of HI-Q’s air sampling product line. He has a Bachelor of Science degree in Mechanical Engineering from San Diego State University and over 10 years of experience in the design and application of Air Sampling Equipment, Systems, and Accessories in both the Nuclear and Environmental Industries. HI-Q Environmental Products is a participating Affiliate member of the Health Physics Society (HPS) and a Corporate Sponsor of the National Registry of Radiation Protection Technologists (NRRPT).

Brian Asamoto has 35 years of experience in the nuclear power industry with the last 31 years in the design of radiation monitoring and sampling systems for commercial nuclear power plants. Mr. Asamoto has specialized in the monitoring of normal and post-accident radioactive effluents from the release points in these power plants. He also has experience in the start-up and commissioning of major radiation monitoring systems for new plant installations. Mr. Asamoto is a member of the ANSI N13.1 working group and is currently involved in projects for verifying that stack sample locations conform to the requirements of ANSI N13.1-1999. He has a Bachelor of Science in Mechanical Engineering from the University of California at Santa Barbara, a Master of Science in Mechanical Engineering from San Diego State University, and is a registered professional engineer in the state of California.

Brent Blunt has over 30 years experience in the area of air pollution control, environmental compliance, dispersion modeling, aerosol transport and air emissions inventory. He is currently leading a new ANSI committee developing an Ambient Air Sampling Standard. This work involves innovative research in the ambient transport of large particles. He also serves on three other ANSI committees and is developing modeling software for particle transport in sample lines and the selection of a homogeneous sampling site in effluent stack. Mr. Blunt was a contributing author to the ANSI/HPS N13.1-1999 standard and continues to serve on the working group for that standard. As the environmental team lead for a consortium of companies from the USA, France and Japan, he prepared the environmental compliance portions of the DOE (Department of Energy) sponsored industry studies for the GNEP (Global Nuclear Energy Partnership). Mr. Blunt holds a Bachelor degree in Chemistry and a Masters degree in Chemical Engineering from Mississippi State University. He is well respected and well known throughout the DOE complex. He was a team member for the preparation of the EPA Guidance document entitled “Methods For Estimating Fugitive Air Emissions of Radionuclides From Diffuse Sources at DOE Facilities”. Mr. Blunt has 22 years experience as the project lead for the Radionuclide NESHAP program at the Savannah River Site. Handling the day-to-day needs for over 350 sources and developing the compliance strategy for over 20 major projects.

Nagaraj Ramakrishna has been working in the air sampling industry for the past 9 years. Mr. Ramakrishna has been involved in the design, testing, and installation of air sampling systems. He has developed systems to control the operation of both high volume and low volume air sampling systems. Prior to that time, Mr. Ramakrishna was a graduate student at Texas A&M University performing aerosol generation, detection, and sampling experiments for Dr. Andrew McFarland. While at Texas A&M University he was responsible for conducting scale model testing to verify that stack sampling locations met the requirements of ANSI N13.1-1999. He is currently responsible for the scale model testing of several vent stacks and ducts to verify that the sampling locations conform to the requirements of ANSI N13.1-1999. Mr. Ramakrishna has a Masters of Science in Mechanical Engineering from Texas A&M University.

Accommodations

This course will be held at the Omni Hotel in San Diego.

A block of rooms has been reserved at reduced rates for course participants. Please make your reservation directly with the hotel by calling 619-231-6664 – please specify that you are attending the Technical Management Services’ short course to receive the group rate.

The reserved block of rooms will be released 3 weeks prior to the course (at which time rooms will be offered on an availability basis only).

How to Register

1. Register online: www.tmscourses.com
2. Call TMS at (860) 738-2440
3. Fax your registration (860) 738-9322
4. Mail the attached form:
 TMS, P.O. Box 226, New Hartford, CT 06057

Name _______________________________________
Company ______________________________________
Address _______________________________________
City __________________ State ____Zip _________
Telephone ___________________ Email ___________

Course Fee: $1295.00

☐ Bill my company
P.O. Number: ______________________

☐ Charge Credit Card:

Card Number: _______________________
Expiration Date: _____________
Billing address of card: __________________________

Continuing Education Credits

The AAHP has awarded 32 credits for this course. Please reference ID Number 2011-10-012